Electron microscopic visualization of sites of nascent DNA synthesis by streptavidin-gold binding to biotinylated nucleotides incorporated in vivo
نویسندگان
چکیده
Biotinylated nucleotides (bio-11-dCTP, bio-11-dUTP, and bio-7-dATP) were microinjected into unfertilized and fertilized Xenopus laevis eggs. The amounts introduced were comparable to in vivo deoxy-nucleoside triphosphate pools. At various times after microinjection, DNA was extracted from eggs or embryos and subjected to electrophoresis on agarose gels. Newly synthesized biotinylated DNA was analyzed by Southern transfer and visualized using either the BluGENE or Detek-hrp streptavidin-based nucleic acid detection systems. Quantitation of the amount of biotinylated DNA observed at various times showed that the microinjected biotinylated nucleotides were efficiently incorporated in vivo, both into replicating endogenous chromosomal DNA and into replicating microinjected exogenous plasmid DNA. At least one biotinylated nucleotide could be incorporated in vivo for every eight nucleotides of DNA synthesized. Control experiments also showed that heavily biotinylated DNA was not subjected to detectable DNA repair during early embryogenesis (for at least 5 h after activation of the eggs). The incorporated biotinylated nucleotides were visualized by electron microscopy by using streptavidin-colloidal gold or streptavidin-ferritin conjugates to bind specifically to the biotin groups projecting from the newly replicated DNA. The incorporated biotinylated nucleotides were thus made visible as electron-dense spots on the underlying DNA molecules. Biotinylated nucleotides separated by 20-50 bases could be resolved. We conclude that nascent DNA synthesized in vivo in Xenopus laevis eggs can be visualized efficiently and specifically using the techniques described.
منابع مشابه
Grouping of ferritin and gold nanoparticles conjugated to pRNA of the phage phi29 DNA-packaging motor.
The bacteriophage phi29 DNA-packaging motor, which translocates and compresses the DNA genome of the phage into its procapsid during virion assembly, involves an essential ring formed by the packaging RNA (pRNA). We attached electron-dense nanoparticles to pRNA by hybridizing a DNA oligonucleotide with a biotin or thiol modification to a 3'-extension of core pRNA, and by coupling streptavidin a...
متن کاملSynthesis and Functionalization of Gold Nanoparticles by Using of Poly Functional Amino Acids
Synthesis and characterization of two functionalized gold nanoparticles by using of two poly functional amino acids (L-Arginine and L-Aspartic acid) are reported. The gold nanoparticles were reduced by sodium citrate and functionalized with L-Arginine at the pH of 7 and 11 and L-Aspartic acid at the pH of 7. Transmission electron microscopy, UV-Vis spectroscopy, dynamic light scattering, zeta p...
متن کاملA novel approach to Au nanoparticle-based identification of DNA nanoarrays.
The combination of electron beam lithography and gold nanoparticle-based detection method is subject to a novel high-resolution approach to detecting DNA nanoarrays. In this work, gold nanoparticle-based detection of DNA hybridization on nanostructured arrays is presented. The nanostructured arrays were created by electron beam lithography of a self-assembled monolayer. Amine groups, which are ...
متن کاملElectron microscopy mapping of oligopurine tracts in duplex DNA by peptide nucleic acid targeting.
Biotinylated homopyrimidine decamer peptide nucleic acids (PNAs) are shown to form sequence-specific and stable complexes with complementary oligopurine targets in linear double-stranded DNA. The noncovalent complexes are visualized by electron microscopy (EM) without chemical fixation using streptavidin as an EM marker. The triplex stoichiometry of the PNA-DNA complexes (two PNA molecules pres...
متن کاملSimple methods for the 3' biotinylation of RNA.
Biotinylation of RNA allows its tight coupling to streptavidin and is thus useful for many types of experiments, e.g., pull-downs. Here we describe three simple techniques for biotinylating the 3' ends of RNA molecules generated by chemical or enzymatic synthesis. First, extension with either the Schizosaccharomyces pombe noncanonical poly(A) polymerase Cid1 or Escherichia coli poly(A) polymera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 107 شماره
صفحات -
تاریخ انتشار 1988